DATA & DEFINITIONS

Material supplied:

Character disclaimer – page 3	Grainsize chart – page 9
• Physical constants – page 3	• Movement of sand by fluids – page 9
• Periodic Table of the Elements – page 4	• Biostratigraphy of key fossil organisms – page 10
• Distance to the horizon calculation – page 5	• Mohs hardness scale – page 10
• Types of ammonites – page 5	
• Geological Time Scale 2023 – page 6	
• Igneous Rock classification chart – page 7	
Palaeocurrent patterns- page 8	

Location and Character name disclaimer

The characters and events portrayed in this paper are fictitious (but fun). Enjoy!

Locations on Earth, and the features they possess, are fictional unless otherwise stated (including those based on actual geography). Locations on other planets are real.

Physical constants and other useful information

Unit or constant	Symbol	Value
Astronomical unit	AU	1.496 x 10 ¹¹ m
Light year	Ly	9.461x 10 ¹⁵ m
Parsec	pc	3.261 light years = 3.085×10^{16} m
Speed of light	с	299,792,458 m/s \approx 3 x 10 ⁸ m/s
Universal gravitational constant	G	6.67 x 10 ⁻¹¹ Nm ² kg ²

• Degrees Celsius (°C) to Degrees Kelvin (K): $T_{(°C)} = T_{(K)} - 273.15$

8	Helium 4.00	10 Neon 20.18	18 Ar 39.95 39.95	36 Krypton 84.80	X Xenon 131.25	86 Radon 222.02	118 Ununoctium unknown	Veterium 13 13 13 13 13 13 13 13 13 13
	17	P Fluorine 19.00	CL CL 35.45 35.45	35 Bromine 79.90	53 bdine 1 26.90	At Astatine 209.99	Unurseptium Unurseptium Un known	256 Tium Sea Tium 256 Tium 256 Tium Law Law Law Law Law Law Law Law
	16	0 0xygen 16.00	16 Sulfur 32.07	34 Selenium 78.97	Tellurium 127.6	PO PO [208.98]	116 LV [298]	168.93 168.93 168.93 01 168.93 01 168.93 01 168.93 01 168.93 01 168.93 01 168.93 01 168.93 01 168.93 01 168.93 01 168.93 01 168.93 01 168.93 01 168.93 01 168.93 01 168.93 17 168.93 17 168.93 17 168.93 17 168.93 17 168.93 17 168.93 17 168.93 17 168.93 17 168.93 17 168.93 17 17 18 19 19 19 10 10 10 10 10 10 10 10 10 10
	15	Nitrogen 14.01	15 Phosphorus 30.97	AS Arsenic 74.92	51 Sb Antimony 121.76	83 Bismuth 208.98	115 Ununpentiur unknown	Fermium 167.26 7.77 100 7.77 100 100 167.26 167.26
	4	6 Carbon 12.01	14 Sillcon 28.09	Gemaniun 72.63	50 Sn 118.71	Pb ^{1 md} ^{207.2}	Ferovium [289]	Provide the second state of the second state o
nts	<u>1</u> 3	5 Boon 10.81	13 Aluminum 26.98	31 Ga Galitum 69.72	49 Indium 114.82	181 Thallium 204.38	Ununtrium Ununtrium unknowr	
eme			12	30 Zmc 65.38	48 Cd 112.41	BO Meruy 200.59	m Copernic (u) [277]	⁶⁵ ⁹⁷ ⁹⁷ ⁹⁷ ⁹⁷ ⁹⁷ ⁹⁷ ⁹⁷ ⁹⁷
le El			7	29 CU 63.55 63.55	Ag silver 107.87	AU 196.97	II1 Roengeniu [272]	247 07 247 07 247 07 247 07
oft			10	28 Nickel 58.69	Pd Paladiur 106.42	Patinum 195.09	m D [269]	63 Europhum 95 A3.06 Americium Americium
able			0	27 Cobalt 58.93	m Rhodiun 102.91	77 Ir 192.22	109 Meitneriu [268]	244.06 Putonium 244.06
dicT			00	26 Fe Iron 55.85	m Rutheniu 101.07	76 OS 0 190.23	Hassium Hassium [269]	Promethium Promethium 93 Neptunium Neptunium
erio			7	m Mn Mangane 54.94	um Technetic	Previous BReniur Rteniur 186.21	IO7 Bhritim [264]	60 Necdymium 144.24 0 0 22 0 238.05 0 338.05
L			ø	m CL 51.99	Molibden 95.95	Tungste 183.84	106 Seebugg	59 Prasedy mum 140.91 91 Protactinium 7331.04
			Ś	m Vanadiu 50.94	m Nibbiu 92.91	: 73 Tantalu 180.9	105 Dbb Dbbmiu Dubmiu	233.04 Thoritum 90 140.12
			4	22 m Titaniu 47.87	n Zr 2irconiu 91.22	Hf Hf Hf Hf	S 104	PCtinium AC
		(. . E	م ص <u>ة</u> _	m Scandiu 544.96	m 2 2 88.91	Lanthani	89-100 Actinid)
ſ	دم ۲	Berylliu 9.01	MC Mgnesi 24.31		m Strontiu 87.62	56 Bariun 137.33	m Radiu 2 226.0)
- [Hydroge 1.01	Clithiun 6.94	11 Sodiun 22.99	Potassiu 39.10	37 Rb 8447 8447	55 CS 132.9	B7 Franciu 223.03	

Periodic Table of the Elements courtesy of http://sciencenotes.org/category/chemistry/periodic-table-chemistry/

Australian Science Olympiads ©Australian Science Innovations ABN 81731558309

Distance to the horizon calculation

-assuming the Earth is a sphere and there is no atmospheric refraction

Observer at A Horizon at B h is observers height above sea level R is the radius of the sphere - for Earth this is 6371 km D is distance A to B

Identifying different types of ammonites by their sutures

Nautiloids and Ammonites are cephalopod molluscs. Their shells vary from straight to tightly coiled and are divided into chambers by thin dividing walls (septa). Septa vary from very simple curved structures to extremely complex convoluted structures. Suture lines are formed by the intersection of the septa with the outer shell wall. These lines are only visible on external surfaces that have had most of the outer layers worn away to reveal the intersections between the shell wall and the septa.

Australian Science Olympiads ©Australian Science Innovations ABN 81731558309

IRL - http:

International Chronostratigraphic Chart 2023/04 courtesy of https://stratigraphy.org/chart

Note: Numerical age (Ma) means the age in millions of years

Australian Science Olympiads ©Australian Science Innovations ABN 81731558309

Igneous rock classification chart

Palaeocurrent patterns

The direction of flow of fluids depositing sediments can be determined from characteristic sedimentary structures constructed as the deposits are laid down. These structures include pebble imbrication, cross-lamination, cross-bedding, flute marks and the profile of ripples.

These structures can also be found in ancient sedimentary rocks, enabling the direction of flow at the time, the palaeocurrent, to be measured.

Visual representation of the data using a compass rose enables a quick insight into the nature of the depositional environment for each strata or group of strata. In this type of rose, each wedge represents a 'bin' of data for intervals of 5° to as much as 30°. The radial distance of each wedge is proportional to the frequency of the data in that bin.

When viewed this way patterns do emerge and these patterns are summarised below:

Environment of deposition	Palaeocurrent vector pattern	Regional pattern
River – braided	Unimodal – low variability	Often fan-shaped
River – meandering	Unimodal – high variability	
Wind blown dunes	Unimodal, bimodal or polymodal	Large variations over vast
		distances
Deltas	Unimodal	Radiating
Shorelines	Mostly bimodal	Mostly on-shore / off-shore
Marine turbidites	Mostly unimodal	Often fan-shaped

Gravel: Granules	s 2–4 mm Pebbles	s 4–64 mm C	obbl	es 64–256 mr	n Bo	oulders >256 mm
Angular	Subangular	Subrounde	d	Rounde	d	Well Rounded
444		010	8		6	
		Very	14	10–2000 µm	VC	
	ſ	Coarse	100	00–1410 µm		
		Coarse	71	0–1000 µm	C	
		Coarse	50	00–710 µm		
Sand g	rains	Medium	35	50–500 µm	м	
		modulin	25	50–350 µm		
		Fine	17	77–250 µm	F	
		1 IIIC	12	25–177 µm		
		Very	8	8–125 µm	VF	
		Fine	6	62–88 µm		
very poorly sorted	poorly sorted	moderately sor	ted	well sorte	d	very well sorted
			S.C	RANG	XX	

Grainsize chart, courtesy of the Geological Survey of NSW

Movement of sand by fluids. Sediments move, driven by fluid motion, by being pushed along or by rolling along the ground (creep), bouncing from one spot on the ground to the next (saltation) or by suspension in the fluid without touching the ground. The transport mode for any given grainsize will vary as the fluid velocity changes. Image source: https://en.wikipedia.org/wiki/Saltation_(geology)

Hardness	Example Minerals/materials
1	Talc
2	Gypsum
2.5	Fingernail, pure gold, silver, aluminium
3	Calcite, copper coin
4	Fluorite
4.5	Platinum, iron
5	Apatite, Pyroxene group (5 to 6)
6	Orthoclase feldspar, titanium, spectrolite, Pyroxene group (5 to 6)
6.5	Plagioclase feldspar, steel file, iron pyrite, glass, vitreous pure silica
7	Quartz, amethyst, citrine, agate, olivine, tridymite (high temp quartz)
7.5	Garnet, coesite (high pressure quartz)
8	Hardened steel, topaz, beryl, emerald, aquamarine
9	Corundum, ruby, sapphire
9.5	Carborundum
10	Diamond

Mohs Hardness Scale

Biostratigraphy of some key fossils